JET PROPULSION LABORATORY

September 26, 2003

SIRTF INSTRUMENT POINTING FRAME KALMAN FILTER EXECUTION SUMMARY

IPF RUN NUMBER:01P095REPORT TYPE:IOC EXECUTION (PRECOARSE)

 PRIME FRAME:
 MIPS_24um_center (95)

 INFERRED FRAMES:
 (96) (99) (100) (103) (104)

IPF TEAM

Autonomy and Control Section (345) Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive Pasadena, CA 91109

Contents

1	IPF EXECUTION SUMMARY	4
2	IPF INPUT FILE HISTORY	9
3	IPF EXECUTION RESULTS	10
	3.1 IPF EXECUTION OUTPUT PLOTS	10
	3.2 IPF OUTPUT DATA (IF MINI FILE)	24
	3.3 IPF EXECUTION LOG	27
4	COMMENTS	30

List of Figures

1.1	A-priori and a-posteriori IPF frames	4
1.2	A-priori and a-posteriori IPF frames (ZOOMED)	8
2.1	Scenario Plot	9
3.1	TPF coords of measurements and a-priori predicts $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	11
3.2	Oriented Pixel Coords of measurements and a-priori predicts	11
3.3	A-priori prediction error	12
3.4	Oriented Pixel Coords of measurements and a-priori predicts (PCRS only)	12
3.5	IPF execution convergence, chart 1	13
3.6	IPF execution convergence, chart 2	13
3.7	Parameter uncertainty convergence	14
3.8	IPF parameter symbol table	14
3.9	KF parameter error sigma plots	15
3.10	LS parameter error sigma plot	15
3.11	KF and LS parameter error sigma plot	16
3.12	Array plot with (solid) and w/o (dashed) optical distortion corrections	16
3.13	Oriented Pixel Coords of meas. and a-posteriori predicts	17
3.14	Oriented Pixel Coords of meas. and a-posteriori predicts (attitude corrected) $\ . \ . \ .$	17
3.15	KF innovations with (o) and w/o (+) attitude corrections $\hdots \hdots \hdddt \hdots \hdots$	18
3.16	KF innovations with (o) and w/o (+) attitude corrections (PCRS) $\ . \ . \ . \ . \ .$	18
3.17	W-axis KF innovations and 1-sigma bound	19

3.18	V-axis KF innovations and 1-sigma bound	19
3.19	Estimated attitude corrections (Body frame)	20
3.20	Estimated attitude error sigma plot (Body frame)	20
3.21	Thermo-mechanical boresight drift (equiv. angle in (W,V) coords) $\ \ldots \ \ldots \ \ldots \ \ldots$	21
3.22	Thermo-mechanical boresight drift (equiv. angle in Body frame)	21
3.23	Gyro drift bias contribution (equiv. rate in (W,V) coords)	22
3.24	Gyro drift bias contribution (equiv. angle in (W,V) coords) \hdots	22
3.25	Gyro drift bias contribution (equiv. angle in Body frame)	23

List of Tables

1.1	IPF filter input files	5
1.2	IPF filter execution configuration	5
1.3	IPF filter execution mask vector assignment	5
1.4	IPF calibration error summary ([arcsec], 1-sigma, radial)	6
1.5	Measurement prediction error summary (1-sigma)	6
1.6	IPF Brown angle summary	7
2.1	IPF input file editing status	9
3.1	Table of figures (IPF run)	10

1 IPF EXECUTION SUMMARY

This report summarizes the SIRTF Instrument Pointing Frame (IPF) Kalman Filter execution associated with run file: RN01P095. In particular, this Focal Point Survey calibrates the instrument: MIPS_24um_center (95), as part of the IOC Precoarse Survey. The main calibration results from the IPF filter execution have been documented in IF01P095 typically stored in the mission archive DOM collection IPF_IF. This report only summarizes the main aspects of the run, and does not substitute for the full information contained in the IF file.

Section 1 summarizes the filter execution results. The filter configurations are tabulated in Table 1.2 and the mask vector assignments are tabulated in Table 1.3. A total of 8 state parameters are estimated in this run. The overall End-to-End pointing performances are tabulated in Table 1.4. The prediction residuals throughout the estimation processes are tabulated in Table 1.6. Section 3 summarizes resulting plots, a mini summary of the IF IPF output file, and the execution log. Section 4 captures the user comments that are specific to this particular run.

Figure 1.1: A-priori and a-posteriori IPF frames

RAW	FINAL (After Editing)
AA02P095	AA02P095
AS01P095	AS01P095
CA01P095	CA01P095
CB91P095	CB91P095
CS03P095	CS03P095

Table 1.1: IPF filter input files

EXECUTION CONFIGURATION ITEM	CURRENT STATUS
IPF Filter Version Used	IPF.V2.0.0B
Frame Table Version Used	BodyFrames_SPC_06a
Scan-Mirror Employed?	YES
IPF Filter Mode	LITE-MODE(3):FLT
SLIT-MODE Operation	DISABLED
Kalman Filter Operation	ENABLED
Least-Squares Data Analysis	ENABLED
IBAD Screening	ENABLED
User-Specified Data Editing	DISABLED
Total Number of Iterations	25
LS Residual Sigma Scale	3.03086823E + 000
Total Number of Maneuvers	1

Table 1.2: IPF filter execution configuration

Con.	Plate	Scale		Γ Dep	endent]]	Γ^2 Dep	penden	t		Liı	near P	late Sc	ale		Mir	ror
a_{00}	b_{00}	c_{00}	a_{10}	b_{10}	c_{10}	d_{10}	a_{20}	b_{20}	c_{20}	d_{20}	a_{01}	b_{01}	c_{01}	d_{01}	e ₀₁	f_{01}	α	β
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	IPF (I	.)				Ali	ignment R			Gyro Drift Bias								
θ_1	θ_2	θ_3	a_{rx}	a_{ry}	a_{rz}	b_{rx}	b_{ry}	b_{rz}	c_{rx}	c_{ry}	c_{rz}	b_{gx}	b_{gy}	b_{gz}	c_{gx}	c_{gy}	c_{gz}	
20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	
1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Table 1.3: IPF filter execution mask vector assignment

FOCAL PLANE SURVEY ANALYSIS: IOC Precoarse Survey. INSTRUMENT NAME: MIPS_24um_center NF: 95

PIX2RADW: 1.20874169E-005[rad/pixel] = 2.4932E+000[arcsec/pixel]
PIX2RADV: 1.20874169E-005[rad/pixel] = 2.4932E+000[arcsec/pixel]

FRAME	DESCRIPTION	IPF^1	SF^2	TOTAL	REQ
095(P)	MIPS_24um_center	4.2949	0.0855	4.2958	1.00
096(I)	MIPS_24um_plusY_edge	4.5722	0.0855	4.5730	N/A
099(I)	MIPS_24um_small_FOV1	4.3079	0.0855	4.3088	N/A
100(I)	MIPS_24um_small_FOV2	4.3037	0.0855	4.3045	N/A
103(I)	$MIPS_24um_large_FOV1$	4.2953	0.0855	4.2961	N/A
104(I)	MIPS_24um_large_FOV2	4.2948	0.0855	4.2957	N/A

Table 1.4: IPF calibration error summary ([arcsec], 1-sigma, radial)

RMS METRIC	A PRIORI ³	A POSTERIORI ³	ATT. $CORRECTED^4$	UNITS
Radial	20.8889	1.4895	1.4893	arcsec
W-Axis	5.1420	1.1569	1.1570	arcsec
V-Axis	20.2462	0.9381	0.9377	arcsec
Radial	8.3783	0.5974	0.5973	pixels
W-Axis	2.0624	0.4640	0.4640	pixels
V-Axis	8.1205	0.3763	0.3761	pixels

Table 1.5: Measurement prediction error summary (1-sigma)

¹IPF filter removes systematic pointing errors due to: thermomechanical alignment drift (Body to TPF), gyro bias and bias drift, centroiding error, attitude error, and optical distortion. IPF SIGMA presented here is "Scaled" by the Least Squares Scale factor. The Least Squares Scale Factor was: 3.030868. It is assumed that the gyro Angle Random Walk contribution is captured with the Least Squares scaling. The gyro ARW contribution can be approximately calculated as 0.1712 arcseconds, given that ARW = 100 $\mu deg/\sqrt{hr}$, with 4.069530e+002 second Maneuver time (max), and 1 independent Maneuvers.

²Gyro Scale Factor(GSF) assumes 95 ppm error over 0.250 degree maneuver.

³This can be interpreted as estimate of "pixel to sky" pointing reconstruction error if no science data is used.

 $^{^{4}}$ This can be interpreted as estimate of achieved S/I centroiding error

IPF BROWN ANGLE SUMMARY						
	FRAME	E TABLE US	ED: BodyFra	ames_SPC_06	a	
NF	NAME	WAS	IS	CHANGE	UNIT	
095	theta_Y	+6.641000	+6.724001	+0.083001	arcmin	
095	$theta_Z$	+3.931000	+4.258239	+0.327239	arcmin	
095	angle	+0.000000	+0.577299	+0.577299	deg	
096	theta_Y	+6.595000	+6.721218	+0.126218	arcmin	
096	theta_Z	+6.712000	+6.970374	+0.258374	arcmin	
096	angle	-0.000000	+0.577299	+0.577299	deg	
099	theta_Y	+7.687000	+7.758095	+0.071095	arcmin	
099	$theta_Z$	+3.943000	+4.277861	+0.334861	arcmin	
099	angle	-0.000000	+0.577299	+0.577299	deg	
100	theta_Y	+5.574000	+5.669225	+0.095225	arcmin	
100	$theta_Z$	+3.918000	+4.238226	+0.320226	arcmin	
100	angle	+0.000000	+0.577299	+0.577299	deg	
103	theta_Y	+6.746000	+6.827410	+0.081410	arcmin	
103	$theta_Z$	+3.932000	+4.260201	+0.328201	arcmin	
103	angle	+0.000000	+0.577299	+0.577299	deg	
104	theta_Y	+6.558000	+6.641274	+0.083274	arcmin	
104	$theta_Z$	+3.930000	+4.256670	+0.326670	arcmin	
104	angle	$+\overline{0.000000}$	$+\overline{0.577299}$	$+\overline{0.577299}$	deg	

Table 1.6: IPF Brown angle summary

Figure 1.2: A-priori and a-posteriori IPF frames (ZOOMED)

2 IPF INPUT FILE HISTORY

WAS	SIZE	IS	SIZE	REMOVED	PATCHED
AA02P095	UNCHANGED	AA02P095	UNCHANGED	0	0
CA01P095	UNCHANGED	CA01P095	UNCHANGED	0	N/A
CB91P095	UNCHANGED	CB91P095	UNCHANGED	0	N/A

Table 2.1: IPF input file editing status

Figure 2.1: Scenario Plot

3 IPF EXECUTION RESULTS

3.1 IPF EXECUTION OUTPUT PLOTS

This subsection summarizes the IPF filter results. As shown in Table 3.1, the output plots are segmented to three groups: predicted performance, post-run results and IPF trending plots.

FIGURE NO.	DESCRIPTION						
	Predicted performance prior to IPF run						
Figure 3.1	Meas. and a-priori predicts in TPF coords						
Figure 3.2	Meas. and a-priori predicts in Oriented Pixel Coords including rectangular array boundary approx-						
	imation						
Figure 3.3	A-priori prediction error						
Figure 3.4	Oriented Pixel Coords of measurements and a-priori predicts (PCRS only)						
	IPF filter performance (post run results)						
Figure 3.5	IPF execution convergence, chart 1: (top) normalized residual error vs. iteration number and (bot-						
	tom) norm of effective parameter corrections						
Figure 3.6	IPF execution convergence, chart 2: parameter correction size vs. iteration number						
Figure 3.7	Parameter uncertainty convergence: square-root of diagonal elements of covariance matrix vs. ma-						
	neuver number						
Figure 3.8	IPF parameter symbol table						
Figure 3.9	KF parameter error sigma plot (a-priori-dashed, a-posteriori-solid). Includes true parameter errors						
	(FLUTE runs only)						
Figure 3.10	LS parameter error sigma plot. Includes true parameter errors (FLUTE runs only)						
Figure 3.11	KF and LS parameter errors sigma plot (Figure 3.9 & Figure 3.10 combined)						
Figure 3.12	Array plot with (solid) and w/o (dashed) optical distortion corrections						
Figure 3.13	Measurements and a-posteriori predicts in Oriented Pixel Coords including rectangular array bound-						
	aries (a-priori-dashed, a-posteriori-solid)						
Figure 3.14	Attitude corrected meas. and a-posteriori predicts in Oriented Pixel Coords including rectangular						
	array boundaries (a-priori-dashed, a-posteriori-solid)						
Figure 3.15	KF innovations with (o) and w/o (+) attitude corrections						
Figure 3.16	KF innovations with (o) and w/o $(+)$ attitude corrections (PCRS)						
Figure 3.17	W-axis KF innovations and 1-sigma bound						
Figure 3.18	V-axis KF innovations and 1-sigma bound						
	IPF parameter trending plots						
Figure 3.19	Estimated attitude corrections (Body frame)						
Figure 3.20	Estimated attitude error sigma plot (Body frame)						
Figure 3.21	Systematic error attributed to thermo-mechanical boresight drift (equiv. angle in (W,V) coords)						
Figure 3.22	Systematic error attributed to thermo-mechanical boresight drift (equiv. angle in Body frame)						
Figure 3.23	Systematic error attributed to gyro drift bias (equiv. rate in (W,V) coords)						
Figure 3.24	Systematic error attributed to gyro drift bias (equiv. angle in (W,V) coords)						
Figure 3.25	Systematic error attributed to gyro drift bias (equiv. angle in Body frame)						

Table 3.1: Table of figures (IPF run)

Figure 3.1: TPF coords of measurements and a-priori predicts

Figure 3.2: Oriented Pixel Coords of measurements and a-priori predicts

Figure 3.3: A-priori prediction error

Figure 3.4: Oriented Pixel Coords of measurements and a-priori predicts (PCRS only)

Figure 3.5: IPF execution convergence, chart 1

Figure 3.6: IPF execution convergence, chart 2

Figure 3.7: Parameter uncertainty convergence

Figure 3.8: IPF parameter symbol table

Figure 3.9: KF parameter error sigma plots

Figure 3.10: LS parameter error sigma plot

Figure 3.11: KF and LS parameter error sigma plot

Figure 3.12: Array plot with (solid) and w/o (dashed) optical distortion corrections

Figure 3.13: Oriented Pixel Coords of meas. and a-posteriori predicts

Figure 3.14: Oriented Pixel Coords of meas. and a-posteriori predicts (attitude corrected)

Figure 3.15: KF innovations with (o) and w/o (+) attitude corrections

Figure 3.16: KF innovations with (o) and w/o (+) attitude corrections (PCRS)

Figure 3.17: W-axis KF innovations and 1-sigma bound

Figure 3.18: V-axis KF innovations and 1-sigma bound

Figure 3.19: Estimated attitude corrections (Body frame)

Figure 3.20: Estimated attitude error sigma plot (Body frame)

Figure 3.21: Thermo-mechanical boresight drift (equiv. angle in (W,V) coords)

Figure 3.22: Thermo-mechanical boresight drift (equiv. angle in Body frame)

Figure 3.23: Gyro drift bias contribution (equiv. rate in (W,V) coords)

Figure 3.24: Gyro drift bias contribution (equiv. angle in (W,V) coords)

Figure 3.25: Gyro drift bias contribution (equiv. angle in Body frame)

3.2 IPF OUTPUT DATA (IF MINI FILE)

OUTPUT FILE NAME: IFmini01P095.dat DATE: 26-Sep-2003 TIME: 18:03 INSTRUMENT NAME: MIPS_24um_center NF: 95 SW RELEASE DATE: August 1, 2003 TPF_FILTER_VERSION: TPF.V2.0.0B FRAME TABLE USED: BodyFrames_SPC_06a ----- IPF BROWN ANGLE SUMMARY -----_____ ----- WAS ---------- TS -----Frame theta_Y theta_Z angle theta_Y theta_Z angle Number (arcmin) (arcmin) (deg) (arcmin) (arcmin) (deg) _____ 095+6.641000+3.931000+0.000000+6.724001+4.258239+0.577299096+6.595000+6.712000-0.000000+6.721218+6.970374+0.577299099+7.687000+3.943000-0.000000+7.758095+4.277861+0.577299100+5.574000+3.918000+0.000000+5.669225+4.238226+0.577299103+6.746000+3.932000+0.000000+6.827410+4.260201+0.577299104+6.558000+3.930000+0.000000+6.641274+4.256670+0.577299 ------
 OFFSET
 NF
 Delta_CW
 Delta_CV

 0
 95
 +0.000
 +0.000
 +0.000 pixels OFFSET FRAME NAME: MIPS_24um_center Brown Angle theta_Y(arcmin) theta_Z(arcmin) angle(deg) +6.641000 +3.931000 +0.000000 +6.724001 +4.259320 +0.000000 WAS(FTB) IS (EST) dT_EST T_SSIGMA +6.724001 +0.083001 +4.258239 +0.577299

 IS (ESI)
 +6.724001
 +4.258239
 +0.577299

 dT_EST
 +0.083001
 +0.327239
 +0.577299

 T_SSIGMA
 +0.050623
 +0.050609
 +0.199440

 dT_EST/T_SSIGMA
 +1.639596
 +6.465981
 +2.894596

 OFFSET
 NF
 Delta_CW

 1
 96
 +0.000
 Delta_CV -64.000 pixels OFFSET FRAME NAME: MIPS_24um_plusY_edge Brown Angle theta_Y(arcmin) theta_Z(arcmin) angle(deg) +6.595000 +6.712000 -0.000000 +6.721218 +6.970374 +0.577299 +0.126218 +0.258374 +0.577299 WAS(FTB) IS (EST) dT_EST T_sSIGMA T_sSIGMA+0.053758+0.054010+0.199440dT_EST/T_sSIGMA+2.347900+4.783865+2.894597 _____
 OFFSET
 NF
 Delta_CW
 Delta_CV

 2
 99
 +25.000
 +0.000
 pixels OFFSET FRAME NAME: MIPS_24um_small_FOV1 Brown Angle theta_Y(arcmin) theta_Z(arcmin) angle(deg) +7.687000 +3.943000 -0.00000 +7.758095 +4.277861 +0.577299 WAS(FTB) IS (EST)
 dT_EST
 +0.071095
 +0.334861
 +0.577299

 T_SSIGMA
 +0.050770
 +0.050769
 +0.199440

 dT_EST/T_SSIGMA
 +1.400343
 +6.595804
 +2.894596

 OFFSET
 NF
 Delta_CW
 Delta_CV

 3
 100
 -25.500
 +0.000
 +0.000 pixels OFFSET FRAME NAME: MIPS_24um_small_FOV2 Brown Angle theta_Y(arcmin) theta_Z(arcmin) angle(deg) WAS(FTB) +5.574000 +3.918000 +0.000000 +5.669225 +4.238226 +0.577299 IS (EST) a1_EST +0.095225 T_sSIGMA +0.02525 +0.320226 +0.577299
 T_sSIGMA
 +0.050722
 +0.050716
 +0.199440

 dT_EST/T_sSIGMA
 +1.877413
 +6.314037
 +2.894596

 OFFSET
 NF
 Delta_CW
 Delta_CV

 4
 103
 +2.500
 +0.000
 +0.000 pixels OFFSET FRAME NAME: MIPS_24um_large_FOV1 Brown Angle theta_Y(arcmin) theta_Z(arcmin) angle(deg) +6.746000 +3.932000 +0.00000 +6.827410 +4.260201 +0.577299 WAS(FTB) IS (EST)

dT_EST	+0.081410	+0.328201	+0.577299		
T_sSIGMA	+0.050627	+0.050614	+0.199440		
dT_EST/T_sSIGMA	+1.608053	+6.484458	+2.894596		
				-	
OFFSET	NF Delta	_CW Delt	ta_CV		
5	104 -2.	000 +0	0.000 pixels		
UFFSET FRAME NAM	1E: MIPS_24um_large	_FUV2			
Brown Angle	theta_i(arcmin)	theta_2(arcmin)	angle(deg)		
WAD(FID)	+6.536000	+4 256670	+0.000000		
AT FST	+0.041274	+4.230070	+0.577299		
	+0.050622	+0.050608	+0.377299		
dT EST/T sSIGMA	+1.645022	+6.454908	+2.894596		
				-	
VARNAME	MEAN	SIGMA		SCALED_SIGMA	
a00 -4.42	259208080463484E-00	3 +1.110183049723	16674E-003 +3.36	48185390970533E-003	•
b00 -2.13	389956984465781E-00	2 +2.033820347536	67515E-003 +6.16	42414845913766E-003	
c00 -8.85	571597161132293E-00	3 +1.138926844368	B0360E-003 +3.45	19371932094068E-003	
del_alpha -1.18	394565193903972E-01	4 +1.64678832172	17958E-003 +4.99	11984120882000E-003	
beta +9.46	574995844571619E-00	1 +2.755649278692	27501E-003 +8.35	20098622649874E-003	
del_theta1 -1.73	341608766932408E-01	4 +1.148479685730	05700E-003 +3.48	08905966375765E-003	
del_theta2 +1.68	383906600246626E-01	8 +4.858542955924	43097E-006 +1.47	25603507630682E-005	
del_theta3 -8.48	919155//80818/2E-01	8 +4.85/24/05/01	50236E-006 +1.47	21675808792320E-005	
ISOF RESIDUAL SI	IGMA SCALE =	+3 030868233793	31954F+000		
	a_mirror(1)	a_mii	rror(2)	a_mirror(3)	
a_mirror_ipf +	0.0000000000000000000000000000000000000	E+000 +1.9428645	5279009407E-002	+9.998112460572858	9E-001
a_mirror_tpf -	-1.9442578311008125	E-003 +9.3563744	4836654434E-003	+9.999543380164956	9E-001
beta	beta_0	beta		beta_total	
4	2.8047410000000001	E-006 +9.4674998	5844571619E-001	+2.655388425200996	5E-006
qT	qT(1)	qT(2)		qT(3)	qT(4)
FrmTb1: -5.522	24103706934371E-007	-9.6589398881636	5961E-004 -5.717	4047628006817E-004	+9.9999937008046424E-001
ESTIM: +5.03/	2558129468184E-003	-9.810/368935810	J278E-004 -6.144	0075534372461E-004	+9.9998664294079598E-001
Dellneta	deltheta(1)		(2) 1007E 00E 0 E10	deltheta(3)	[4]
+1.007	55664/4062255E-002	-2.414404477369	1207E-005 -9.518	9091007115192E-005	
Moon +1 005	theta(1) 757702610461095-000	tneta(2)	DETEE_002 _1 020		[rad]
Mean +1.007	07706857305700E-002	-1.9559526297708	$3007E - 006 \pm 1.236$	0/102192/200/E-003	
Initial Gyro Bia	$B_{\sigma}(1)$		Bg0(2)	Bg0(3)	
initiai dyio bit		0000E+000 +0 0000	0000000000000000000E+0	00 +0 000000000000000000000000000000000	0000E+000
Gvro Bias Correc	tion $Bg(1)$		Bg(2)	Bg(3)	
0,10 2102 00110	+0.000000000000000000000000000000000000	0000E+000 +0.000	000000000000000000E+0	00 +0.000000000000000000000000000000000	000E+000
Total Gvro Bias	BgT(1)		BgT(2)	BgT(3)	
J	+0.000000000000000000000000000000000000	0000E+000 +0.000	00000000000000000E+0	00 +0.000000000000000000000000000000000	000E+000
Initial Gyro Bia	as Rate Cg0(1)		Cg0(2)	Cg0(3)	
-	+0.000000000000000000000000000000000000	0000E+000 +0.000	000000000000000E+0	00 +0.0000000000000	000E+000
Gyro Bias Rate (Correction Cg(1)		Cg(2)	Cg(3)	
-	+0.000000000000000000000000000000000000	0000E+000 +0.000	00000000000000E+0	00 +0.0000000000000	000E+000
Total Gyro Bias	Rate CgT(1)		CgT(2)	CgT(3)	
	+0.000000000000000000000000000000000000	0000E+000 +0.000	00000000000000E+0	00 +0.00000000000000	000E+000
OFFSET	NF Delta	_CW Delt	ta_CV		
1	96 +0.	000 -64	4.000 pixels		
UFFSET FRAME NAN	MIPS_24um_plusY	_edge		T (0)	
	q1(1)	qT(2)		q1(3)	qT(4)
WAD(FIB) -9.363	3943UZZOUZOII6E-007	-9.0920326392183	5241E = 004 = 9.762	2022412/95566E-004	+3.33333003400/0921E-001
TO (EOI) +5.030	00000000010100E-003	9.0200090121042	21026-004 -1.008	0010209021000E-003	· 3. 333000201/004210E-001
DelTheta	deltheta(1)	deltheta	(2)	deltheta(3)	

Units rad rad rad +1.0075628177289433E-002 -3.6715431696437966E-005 -7.5157938041067916E-005 EulAngT theta(1) theta(2) theta(3) [rad] +1.0075772361046198E-002 -1.9551231624285949E-003 -2.0275997382008196E-003 Mean sSigmaT +3.4808891579751777E-003 +1.5637560793017668E-005 +1.5710743621020294E-005 +1.1484792110605124E-003 +5.1594327389966834E-006 +5.1835785686261810E-006 SigmaT Delta_CV
 OFFSET
 NF
 Delta_CW

 2
 99
 +25.000
 +0.000 pixels OFFSET FRAME NAME: MIPS_24um_small_FOV1 qT(2) qT(3) аT aT(1) aT(4) WAS(FTB) -6.4117382846981564E-007 -1.1180284132340469E-003 -5.7348571352373249E-004 +9.9999921056278462E-001 IS (EST) +5.0371586372862263E-003 -1.1314889056829778E-003 -6.1649671362086066E-004 +9.9998648325740958E-001 DelTheta deltheta(1) deltheta(2) deltheta(3) Units rad rad rad +1.0075554553509152E-002 -2.0680705924812100E-005 -9.7406774503614395E-005 [rad] EulAngT theta(1) theta(2) theta(3) +1.0075772361046198E-002 -2.2567383553302495E-003 -1.2443792292921743E-003 Mean sSigmaT +3.4808904197387094E-003 +1.4768301845407472E-005 +1.4768028507750048E-005 SigmaT +1.1484796273648300E-003 +4.8726307797698722E-006 +4.8725405951638978E-006 _____
 OFFSET
 NF
 Delta_CW
 Delta_CV

 3
 100
 -25.500
 +0.000

 IOU
 -25.500
 +0.000
 pixels

 OFFSET FRAME NAME: MIPS_24um_small_FOV2
 qT
 qT(1)
 qT(2)

 WAS(FTB)
 -4.6198041860920160E
 007
 0
 0
 qT(3) qT(4) WAS(FTB) -4.6198041860920160E-007 -8.1070521711647421E-004 -5.6984978266998100E-004 +9.9999950901391088E-001 IS (EST) +5.0373539303327211E-003 -8.2765014547835341E-004 -6.1226286617559016E-004 +9.9998678251004891E-001 DelTheta deltheta(1) deltheta(2) deltheta(3) Units rad rad rad +1.0075621326903903E-002 -2.7699921940369425E-005 -9.3149741153985337E-005 EulAngT theta(1) theta(2) theta(3) [rad] +1.0075772361046198E-002 -1.6491107900087059E-003 -1.2328498693341429E-003 Mean sSigmaT +3.4808904524862632E-003 +1.4754303103610453E-005 +1.4752822256027981E-005 +1.1484796381695075E-003 +4.8680120564479740E-006 +4.8675234678759075E-006 SigmaT _____
 OFFSET
 NF
 Delta_CW
 Delta_CV

 4
 103
 +2.500
 +0.000
 +0.000 pixels OFFSET FRAME NAME: MIPS_24um_large_FOV1 qT qT(2) qT(3) qT(4) qT(1) WAS(FTB) -5.6111515131371191E-007 -9.8116560995659325E-004 -5.7188591179032191E-004 +9.9999935512990956E-001 IS (EST) +5.0372461391393957E-003 -9.9611521251996593E-004 -6.1461035168427971E-004 +9.9998662799056104E-001 DelTheta deltheta(1) deltheta(2) deltheta(3) Units rad rad rad +1.0075585017450591E-002 -2.3681356512212800E-005 -9.5469757636172688E-005 theta(2) [rad] EulAngT theta(1) theta(3) +1.0075772361046197E-002 -1.9860132032283469E-003 -1.2392423823615513E-003 Mean sSigmaT +3.4808905931259736E-003 +1.4726719486245682E-005 +1.4722887913497780E-005 +1.1484796845719571E-003 +4.8589111601908484E-006 +4.8576469769758929E-006 SigmaT _____
 OFFSET
 NF
 Delta_CW
 Delta_CV

 5
 104
 -2.000
 +0.000
 +0.000 pixels OFFSET FRAME NAME: MIPS_24um_large_FOV2 qT(2) qT qT(1) qT(3) qT(4) WAS(FTB) -5.4520033785992621E-007 -9.5382213577026277E-004 -5.7159503889057917E-004 +9.9999938175088265E-001 IS (EST) +5.0372635449913291E-003 -9.6904047066332917E-004 -6.1423307818932833E-004 +9.9998665473808712E-001 DelTheta deltheta(1) deltheta(2) deltheta(3) Units rad rad rad +1.0075591088435516E-002 -2.4223307184630280E-005 -9.5024176278986922E-005 EulAngT theta(1) theta(2) theta(3) [rad] Mean +1.0075772361046198E-002 -1.9318681710017926E-003 -1.2382150136282300E-003

sSigmaT +3.4808905971783358E-003 +1.4725216286398177E-005 +1.4721254945145490E-005 SigmaT +1.1484796859089872E-003 +4.8584151967468607E-006 +4.8571081979111741E-006 ____ _____ q(1) q(2) q(3) q(4) PCRS1A: +5.3376441636293240E-007 +3.7444188848489133E-004 -1.4254917867010713E-003 +9.9999891388248685E-001 PCRS2A: -5.2784065890448333E-007 +3.8463004289789228E-004 +1.3723320176524409E-003 +9.9999898438162671E-001 _____ Row (01) PIX2RADX: +1.2087416876100000E-005 Row (1) TASTART: +7.4899400049076843E+008 Row (02) PIX2RADY: +1.2595908372599999E-005 Row (2) TASTOP: +7.4899600039072263E+008
 Row (02)
 Fille
 Row (08) D12: +0.000000000000000E+000 Row (09) D21: Row (10) D22: Row (11) DG: -----INITIAL STA-TO-PCRS ALIGNMENT (R) KNOWLEDGE (1-SIGMA) SIGMA(X) SIGMA(Y) SIGMA(Z) 4.71796087E+000 2.18437894E-001 2.18791273E-001 [arcsec] PIX2RADX = 1.208741687610E-005[rad/pixel] XPIXSIZE = 2.4932[arcsec] PIX2RADY = 1.259590837260E-005[rad/pixel] YPIXSIZE = 2.5981[arcsec] CX0 = 64.5[pixel] = 160.81[arcsec] CY0 = 64.5[pixel] = 167.58[arcsec] NOMINAL BETAO = 2.804741000000E-006[rad/encoder unit] ENCODER UNIT SIZE = 0.58[arcsec] GAMMA_E0 = 2007.00[encoder unit] = 1161.09[arcsec] _____ | +1 | +0 | FLIP MATRIX D = |----| and DG = -1| +0 | -1 |

3.3 IPF EXECUTION LOG

IPF EXECUTION-LOG FILE NAME: LG01P095.dat INSTRUMENT TYPE: MIPS_24um_center IPF FILTER EXECUTION DATE: 26-Sep-2003 T TIME: 18:03 IPF FILTER VERSION USED: IPF.V2.0.0B ****** ----- Loading & Preparing Input Files ------AAFILE: AA02P095 Loaded! AAFILE dimension = 20000 X 21 ASFILE: AS01P095 Loaded! CAFILE dimension = 69 X 15 CAFILE: CA01P095 Loaded! CBFILE: CB91P095 Loaded! CBFILE dimension = 0×0 CCFILE: CC01P095 Created! CCFILE dimension = 69 X 19 CSFILE: CS03P095 Loaded! Loading Input Files Completed!

----- Selected Mask Vectors -----index = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 mask1 = [1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]----- Selected Initial Gyro Bias Parameters ------IPF Filter in LITE MODE# 3 IPF LITE MODE WITH FILTERED STA QUATERNION! IPF Linearized Using Following Nominal Gyro Bias Estimates ----- Gyro Pre-Processor Run Completed ------AGFILE CREATED: AG01P095.m ACFILE CREATED: AC01P095.m Total Gyro Preprocessor Execution Time: 1 seconds FRAME TABLE ENTRIES FOR PCRS LOADED TO TPCRS q_PCRS5 = [+7.3379987833742897E-007 q_PCRS4 = [+5.3376441636293240E-007 +3.7444188848489133E-004 +5.2236196154513707E-004 -1.4254917867010713E-003 -1.4047712280184723E-003 +9.9999891388248685E-001]; +9.9999887687698918E-001]: q_PCRS9 = [-7.1963421681856818E-007 q_PCRS8 = [-5.2784065890448333E-007 +3.8463004289789228E-004 +5.3239763239987400E-004 +1.3723320176524409E-003 +1.3516841804518383E-003 +9.9999898438162671E-001]; +9.9999894475050310E-001]; _____ ----- Initial Conditions for State ----- Inital Square-Root Cov (diag) p1(03) = c00 = +0.00000000000000E+000Sigma_initial(03,03) = 1.00000000000000E+000 p1(05) = b10 = +0.00000000000000E+000 Sigma_initial(05,05) = 9.99990000000000E+004 Sigma_initial(06,06) = 9.99990000000000E+004 p1(06) = c10 = +0.00000000000000E+000p1(07) = d10 = +0.00000000000000E+000 Sigma_initial(07,07) = 9.999900000000000E+004 p1(08) = a20 = +0.000000000000000E+000 Sigma_initial(08,08) = 9.99990000000000E+004 p1(09) = b20 = +0.0000000000000E+000 Sigma_initial(09,09) = 9.99990000000000E+004 p1(10) = c20 = +0.00000000000000E+000 Sigma_initial(10,10) = 9.99990000000000E+004 p1(11) = d20 = +0.00000000000000E+000 Sigma_initial(11,11) = 9.99990000000000E+004 p1(12) = a01 = +0.00000000000000E+000 Sigma_initial(12,12) = 9.99990000000000E+004 p1(13) = b01 = +0.00000000000000E+000 Sigma_initial(13,13) = 9.999900000000000E+004 Sigma_initial(14,14) = 9.9999000000000000E+004 p1(14) = c01 = +0.00000000000000E+000 p1(15) = d01 = +0.00000000000000E+000 Sigma_initial(15,15) = 9.99990000000000E+004 p1(16) = e01 = +0.00000000000000E+000 Sigma_initial(16,16) = 9.999900000000000E+004 p1(17) = f01 = +0.00000000000000E+000 Sigma_initial(17,17) = 9.999900000000000E+004 p2f(01) = am1 = +0.00000000000000E+000 p2f(02) = am2 = +0.0000000000000E+000 Sigma_initial(18,18) = 1.00000000000001E-001 p2f(03) = am3 = +1.000000000000000E+000 p2f(04) = beta = +1.000000000000000E+000 Sigma_initial(19,19) = 1.000000000000001E-001 p2f(05) = qT1 = -5.5224103706934371E-007 Sigma_initial(20,20) = 1.000000000000001E-001 p2f(06) = qT2 = -9.6589398881636961E-004 Sigma_initial(21,21) = 1.000000000000000E-002 Sigma_initial(22,22) = 1.00000000000000E-002 p2f(07) = aT3 = -5.7174047628006817E-004 p2f(08) = qT4 = +9.9999937008046424E-001 p2f(09) = qR1 = +7.0843915455043316E-004 Sigma_initial(23,23) = 9.99990000000000E+004 p2f(10) = qR2 = +1.2700736988335848E-003 Sigma_initial(24,24) = 9.99990000000000E+004 Sigma_initial(25,25) = 9.99990000000000E+004 p2f(11) = qR3 = -1.6007969679776579E-004p2f(12) = qR4 = +9.9999892711639404E-001 p2f(13) = brx = +0.00000000000000E+000 Sigma_initial(26,26) = 9.99990000000000E+004 p2f(14) = bry = +0.00000000000000E+000 Sigma_initial(27,27) = 9.99990000000000E+004 p2f(15) = brz = +0.00000000000000E+000 Sigma_initial(28,28) = 9.999900000000000E+004 Sigma_initial(29,29) = 9.99990000000000E+004 p2f(16) = crx = +0.00000000000000E+000 p2f(17) = cry = +0.00000000000000E+000 Sigma_initial(30,30) = 9.99990000000000E+004

p2f(19) = bgx	= +0.00000000000000E+000	Sigma_initial(32,32) = 9.99990000000000E+004
p2f(20) = bgy	= +0.00000000000000E+000	Sigma_initial(33,33) = 9.999900000000000E+004
p2f(21) = bgz	= +0.00000000000000E+000	Sigma_initial(34,34) = 9.999900000000000E+004
p2f(22) = cgx	= +0.000000000000000E+000	Sigma initial(35,35) = 9,9999000000000000E+004
p2f(23) = cgv	= +0.00000000000000000000000000000000000	Sigma initial $(36, 36) = 9.99990000000000000000000000000000000$
$p_{21}(20) = c_{07}$	= +0.00000000000000000000000000000000000	Sigma initial $(37, 37) = 9,99990000000000000000000000000000000$
	_ 10:00000000000000000000000000000000000	
	TPE KAIMAN ETITER S	TARTED
Ttomation#001.	$d_{n} = \pm 0.921426976207E_000$	PMC(Poc)=+0 921426976207E-002
Iteration#001:	ap = +9.821430870397E = 002	$RMS(Res) = +1.7EC00011000E_0002$
Iteration#002:	ap = +1.756286113269E-002	RMS(ReS) = +1.750200113209E = 002
Iteration#003:	ap = +1.09/9802/2211E-003	RMS(Res)=+1.097980272211E=003
Iteration#004:	dp = +4.516132339930E-005	RMS(Res)=+4.516132339930E-005
Iteration#005:	dp = +6.410146350891E-007	RMS(Res)=+6.410146350891E-007
Iteration#006:	dp = +1.016352531831E-009	RMS(Res)=+1.016352531831E-009
Iteration#007:	dp = +1.364501949828E-010	RMS(Res)=+1.364501949828E-010
Iteration#008:	dp = +2.769987620369E-012	RMS(Res)=+2.769987620369E-012
Iteration#009:	dp = +1.056548388327E-013	RMS(Res)=+1.056548388327E-013
Iteration#010:	dp = +1.553084560156E-013	RMS(Res)=+1.553084560156E-013
Iteration#011:	dp = +2.724432721722E-013	RMS(Res)=+2.724432721722E-013
Iteration#012:	dp = +1.600730328961E-013	RMS(Res)=+1.600730328961E-013
Iteration#013:	dp = +7.223978482413E-014	RMS(Res)=+7.223978482413E-014
Iteration#014:	dp = +6.012931697650E-014	RMS(Res)=+6.012931697650E-014
Iteration#015:	dp = +1.184190904619E-013	RMS(Res)=+1.184190904619E-013
Iteration#016:	dp = +7.390854056595E-014	RMS(Res)=+7.390854056595E-014
Iteration#017:	dp = +8.218892644655E-014	RMS(Res)=+8.218892644655E-014
Iteration#018:	dp = +1.047091053283E-013	RMS(Res)=+1.047091053283E-013
Iteration#019:	dp = +1.275504942874E-013	RMS(Res)=+1.275504942874E-013
Iteration#020:	dp = +1.136262606851E-013	RMS(Res)=+1.136262606851E-013
Iteration#021:	dp = +1.086250966339E-013	RMS(Res)=+1.086250966339E-013
Iteration#022:	dp = +1.252089556054E-013	RMS(Res)=+1.252089556054E-013
Iteration#023:	dp = +9.719742237025E-014	RMS(Res)=+9.719742237025E-014
Iteration#024:	dp = +5.913731747986E-014	RMS(Res)=+5.913731747986E-014
Iteration#025:	dp = +3.044537434909E-014	RMS(Res)=+3.044537434909E-014
IPF Kalman Filt	er Completed with Error dp	1 + dp2 = +3.0445374349091245E-014
	IPF LEAST SQUARES FILTE	R STARTED
Iteration#001	COND#=+6.730680656492E+002	dp =+9.830219166094E-002
Iteration#002	COND#=+6.876016623349E+002	dp =+1.762238741904E-002
Iteration#003	COND#=+6.872102211789E+002	dp =+1.054189986288E-003
Iteration#004	COND#=+6.871199471359E+002	dp =+4.078811727214E=0.05
Iteration#005	COND#=+6.871229613762E+002	dp =+8.608421797566E-007
Iteration#006	COND#=+6.871228984334E+002	dp =+1.714254934623E-008
Iteration#007	COND#=+6.871228996872E+002	dp =+3.421505485933E=010
Iteration#008	COND#=+6.871228996622E+002	dp =+6.983441353785E=012
Iteration#009	COND#=+6.871228996627E+002	dp =+1.267410794902E-013
Iteration#010	COND#=+6.871228996627E+002	dp =+2.808123392274E-014
Iteration#011	COND = +6.871228996627E+002	dp =+2.061582720747E-013
Iteration#012	COND = +6.871228996627E+002	dp =+1 797756726258E=013
Iteration#013	COND = +6.871228996627E+002	dp =+7 116012688779F-014
Iteration#01/	COND = +6.87122896627E+002	dp =+4.143122626873E-014
Iteration#015	COND#-+6 871228990627E+002	d_{p}
Iteration#016	COND#-+6 871228990627E+002	dp = 1.1071201912191 010
Iteration#010	COND#-+6 871028006607E+002	$ dp = 1.010314070000172E_{-012}$
Iteration#017	COND = +6.871228990027E + 002	dp = +2.0244402992175E = 013
Iteration#010	COND#=+6 87100806607E+000	$ d_{n} = +0.801780261511 E - 014$
Iteration#019	COND#-+6 871008006607E+000	1 [up] = 73.001/002010112 = 014
	COND = + C 0710000000000000000000000000000000000	$ u_{1} = \pm 1.042007910700E = 010$
Iteration#021	COND = +6.871000000000000000000000000000000000000	, $ up = +1.337642734230E = 014$
Iteration#022	COND = +6.871000000000000000000000000000000000000	, up =+9.200/00001010E-014
Iteration#023	COND = - + 6 87100006607E + 002	, 1401-11.323020491320E-013
	COND = + 6.87100006607E + 002	, 1401-74.0020000/0922E-014
IDE Loost Cross	UUND = 0.871228996627E+002	, $ up = \pm 0.755640734033E = 0.14$
IFF Least Squar	es filter completed with Er	101 ap1 + ap2 = +0./59646/946991228E-014

Total Execution Time: 44 seconds

4 COMMENTS

This Pre-Coarse run should be used for sanity checking, and to make first rough corrections to the focal plane quaternions, plate scales, and scan mirror scale factor and alignment.

(1) The original CS file had incorrect polarities. The correct polarities were found by the IPF Team and a new corrected CS file (CS03P095.m) was generated by the MIPS team and used for the IPF run.

(2) We fixed units (from arcseconds/sec to rad/sec) on the GCF columns in the MIPL AA file. (An ISA has been written to correct this with MIPL in the future).

(3) This run was nonstandard in the sense that it was made with respect to a special frame table BodyFrames_SPC_06a which was created to include the results of a recent PAC filter run which updated frames 4 and 8 (i.e., PCRS1 and PCRS2).

(4) The IPF filter was run using LITE mode 3, which makes use of the onboard attitude estimates, and on-board estimate of the STA-to-TPF alignent quaternion. This was required because there were no PCRS measurements available.

(5) In addition to the Brown angles, this run also estimated constant plate scales, mirror alignment and mirror scale factor.

Based on this run, we recommend updating frames 95 and the corresponding inferred frames 96, 99, 100,103,104, with the new quaternions listed in the IF file IF01P095.dat. In our best judgment, these frames will be accurate to better than 5 arcseconds (disregard the accuracies quoted in the the tables which are not strictly valid due to lack of PCRS measurements).

IPF TEAM CONTACT INFORMATION

IPF Team email		ipf@sirtfweb.jpl.nasa.gov	
David S. Bayard	X4-8208	David.S.Bayard@jpl.nasa.gov	(TEAM LEADER)
Dhemetrio Boussalis	X4-3977	boussali@grover.jpl.nasa.gov	
Paul Brugarolas	X4-9243	Paul.Brugarolas@jpl.nasa.gov	
Bryan H. Kang	X4-0541	Bryan.H.Kang@jpl.nasa.gov	
Edward.C.Wong	X4-3053	Edward.C.Wong@jpl.nasa.gov	(TASK MANAGER)

ACKNOWLEDGEMENTS

This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

References

- D.S. Bayard, B.H. Kang, SIRTF Instrument Pointing Frame Kalman Filter Algorithm, JPL D-Document D-24809, September 30, 2003.
- [2] B.H. Kang, D.S. Bayard, SIRTF Instrument Pointing Frame (IPF) Software Description Document and User's Guide, JPL D-Document D-24808, September 30, 2003.
- [3] D.S. Bayard, B.H. Kang, SIRTF Instrument Pointing Frame (IPF) Kalman Filter Unit Test Report, JPL D-Document D-24810, September 30, 2003.
- [4] Space Infrared Telescope Facility In-Orbit Checkout and Science Verification Mission Plan, JPL D-Document D-22622, 674-FE-301 Version 1.4, February 8, 2002.
- [5] Space Infrared Telescope Facility Observatory Description Document, Lockheed Martin LMMS/P458569, 674-SEIT-300 Version 1.2, November 1, 2002.
- [6] SIRTF Software Interface Specification for Science Centroid INPUT Files (CAFILE, CS-FILE), JPL SOS-SIS-2002, November 18, 2002.
- SIRTF Software Interface Specification for Inferred Frames Offset INPUT Files (OFILE), JPL SOS-SIS-2003, November 18, 2002.
- [8] SIRTF Software Interface Specification for PCRS Centroid INPUT Files (CBFILE), JPL SIS-FES-015, November 18, 2002.
- [9] SIRTF Software Interface Specification for Attitude INPUT Files (AFILE, ASFILE), JPL SIS-FES-014, January 7, 2002.
- [10] SIRTF Software Interface Specification for IPF Filter Output Files (IFFILE, LGFILE, TARFILE), JPL SOS-SIS-2005, November 18, 2002.
- [11] R.J. Brown, Focal Surface to Object Space Field of View Conversion. Systems Engineering Report SER No. S20447-OPT-051, Ball Aerospace & Technologies Corp., November 23, 1999.