There is a problem w/ your write-up. Check that you have valied entries for \$CAID and \$Campn in your analysis.php file. If that checks out, then Contact Stansberry"; return ; } // get first matching task $row = mysql_fetch_array($result); $title = $row["title"]; $princ = $row["principal"]; $deputy= $row["deputy"]; $campn0 = $row["campn0"]; $aorkeys = $row["aorkeys"]; // get real name of principal, deputies $princ = ioc_get_person($princ); $princ = $princ[0]; $deps = explode(",",$deputy); foreach ($deps as $depty) { $depty = trim($depty); $depty = ioc_get_person($depty); $depty = $depty[0]; $depty = explode(",",$depty); $depty = $depty[0]; // last names only $deplist[] = $depty; } $deplist = implode(", ", $deplist); $caid = sprintf("%03d",$caid); $file = "mips-".$caid.$campn.".analysis.php"; // if more matches, append the AORKEYS from those $numrows = mysql_num_rows($result); if ($numrows > 1) { $aorkeys = " " . $numrows . " Task Executions:  ". $aorkeys; for ($i=0;$i < mysql_num_rows($result); $i++) { $row = mysql_fetch_array($result); $morekeys = $row["aorkeys"]; $aorkeys = $aorkeys .';  '.$morekeys; } } // END PHP. ?> <? echo "MIPS-$caid, Campaign $campn IOC/SV Analysis"; ?>

Principal:
Deputy:
Analyst:
AORKEYS:
Last Updated:


Task Outcome Summary


Abstract

This task is designed to provide an initial assessment of the calibration behavior (e.g., latent images, responsivity, linearity) as a function of background level. The task in this campaign focuses on the Ge:Ga arrays, as the Si:As array was evaluated in the campaign E version of this task. Some nonlinearity is evident in the detector response. A calibration factor trend with spectral type is apparent at 160µm, which is expected due to the spectral leak.

Analysis

Unless otherwise described in the task writeups for MIPS-92[2,4] and MIPS-35[0,1,2], the data were reduced as described in the campaign R writeups for tasks 922 and 924, as appropriate. Photometry was performed as described in those task writeups.


Results

The measured photometry can be found in the table below. The flux prediction methods are described elsewhere on this site. The sky predictions were generated using SPOT and have been tailored to the approximate observation date at 70µm.

Photometry

Target CAID Band Predicted Flux Predicted Sky Measured Flux Measured Sky DCE Time Spectral Type Calibration Factor


(µm) (Jy) (MJy/sr) (MIPS Unit) (MIPS Unit) (MIPS sec.)
(µJy/arcsec2/MIPS Unit)
HD002261 350X1 160 0.215 3.17 10.0267±0.1097 0.1579±0.0114 3 K0III 8.38e1±9.16e-1
HD002261 350X1 70 1.03 6.64 0.7019±0.0126 0.0003±0.0016 3 K0III 1.50e4±2.69e2
HD024512 315R 160 0.437 15.52 14.3619±0.1535 0.4266±0.0160 3 M2III 1.19e2±1.27e0
HD024512 9221 70 2.11 6.49 1.3613±0.0083 0.0001±0.0011 10 M2III 1.58e4±9.66e1
HD024512 9221 70 2.11 6.49 1.4887±0.0151 0.0003±0.0020 3 M2III 1.45e4±1.47e2
HD039425 315R 160 0.096 6.29 5.7180±0.0938 0.2291±0.0098 3 K2III 6.56e1±1.08e0
HD039425 315R 70 0.458 5.49 0.3406±0.0174 0.0008±0.0023 3 K2III 1.37e4±7.02e2
HD045348 315R 160 0.673 11.36 34.3324±0.3197 0.4299±0.0331 3 F0II 7.66e1±7.13e-1
HD050310 350X1 70 0.690 6.10 0.4417±0.0198 0.0002±0.0026 3 K1III 1.60e4±7.16e2
HD050310 351X1 70 0.690 6.10 0.4634±0.0179 0.0006±0.0024 3 K1III 1.52e4±5.88e2
HD050310 315R 160 0.144 12.20 5.9891±0.1621 0.4153±0.0169 3 K1III 9.39e1±2.54e0
HD051799 315R 160 0.123 9.66 3.7838±0.1391 0.3744±0.0145 3 M1III 1.27e2±4.67e0
HD051799 315R 70 0.594 5.75 0.4070±0.0184 0.0001±0.0024 3 M1III 1.49e4±6.75e2
HD053501 350X1 70 0.135 6.44 0.1176±0.0204 0.0005±0.0027 3 K3III 1.17e4±2.04e3
HD053501 315R 70 0.135 6.43 0.0842±0.0184 0.0006±0.0024 3 K3III 1.64e4±3.58e3
HD089758 350X1 160 0.409 4.02 12.6571±0.1496 0.1821±0.0156 3 M0III 1.26e2±1.49e0
HD096833 351X1 160 0.128 3.85 6.2603±0.1225 0.1618±0.0127 3 K1III 7.99e1±1.56e0
HD100029 351X1 160 0.233 3.30 7.8031±0.1536 0.1579±0.0160 3 M0III 1.17e2±2.30e0
HD100029 351X1 70 1.11 4.46 0.7921±0.0179 0.0000±0.0023 3 M0III 1.43e4±3.24e2
HD131873 924Q 160 0.656 4.50 22.3089±0.1717 0.2100±0.0180 3 K4III 1.15e2±8.84e-1
HD131873 924Q 160 0.656 4.50 22.4832±0.1577 0.2046±0.0165 3 K4III 1.14e2±7.99e-1
HD131873 350X1 160 0.656 4.51 17.5925±0.2221 0.2240±0.0230 3 K4III 1.46e2±1.84e0
HD131873 351X1 160 0.656 4.51 17.9093±0.1989 0.2211±0.0207 3 K4III 1.43e2±1.59e0
HD131873 924R 160 0.656 4.51 20.3119±0.3184 0.2049±0.0315 3 K4III 1.26e2±1.98e0
HD131873 924R 160 0.656 4.51 20.5884±0.2189 0.2068±0.0228 3 K4III 1.24e2±1.32e0
HD131873 924V 160 0.656 4.51 21.5706±0.2831 0.1812±0.0291 3 K4III 1.19e2±1.56e0
HD131873 924W 160 0.656 4.51 19.5695±0.2408 0.1960±0.0251 3 K4III 1.31e2±1.60e0
HD131873 9221 70 3.14 4.30 1.8945±0.0099 0.0002±0.0013 3 K4III 1.69e4±8.85e1
HD131873 9241 160 0.656 4.51 19.5078±0.2324 0.1755±0.0255 3 K4III 1.31e2±1.56e0
HD131873 9241 160 0.656 4.51 19.4915±0.2521 0.1818±0.0276 3 K4III 1.31e2±1.70e0
HD131873 9241 160 0.656 4.51 19.6565±0.2439 0.1804±0.0267 3 K4III 1.30e2±1.62e0
HD131873 9241 160 0.656 4.51 19.6563±0.2652 0.2036±0.0289 3 K4III 1.30e2±1.76e0
HD163588 922Q 70 0.329 4.36 0.2244±0.0104 -0.0006±0.0014 3 K2III 1.50e4±6.95e2
HD163588 922Q 70 0.329 4.36 0.2516±0.0107 -0.0004±0.0014 3 K2III 1.34e4±5.69e2
HD163588 922X1 70 0.329 4.42 0.1916±0.0168 0.0004±0.0022 3 K2III 1.76e4±1.54e3
HD163588 922X1 70 0.329 4.42 0.2361±0.0211 0.0002±0.0028 3 K2III 1.42e4±1.27e3
HD163588 922R 70 0.329 4.43 0.2177±0.0094 0.0000±0.0012 3 K2III 1.55e4±6.67e2
HD163588 922R 70 0.329 4.43 0.2188±0.0279 0.0016±0.0037 3 K2III 1.54e4±1.96e3
HD163588 922V 70 0.329 4.45 0.2170±0.0130 0.0003±0.0017 3 K2III 1.55e4±9.29e2
HD163588 922W 70 0.329 4.52 0.2380±0.0097 -0.0005±0.0013 3 K2III 1.41e4±5.76e2
HD163588 9221 70 0.329 4.58 0.2206±0.0084 -0.0006±0.0011 3 K2III 1.52e4±5.81e2
HD163588 9221 70 0.329 4.58 0.2372±0.0086 -0.0007±0.0011 3 K2III 1.42e4±5.14e2
HD163588 9221 70 0.329 4.58 0.2447±0.0094 -0.0006±0.0012 3 K2III 1.37e4±5.28e2
HD163588 9221 70 0.329 4.58 0.2348±0.0093 -0.0006±0.0012 3 K2III 1.43e4±5.67e2
HD163588 9221 70 0.329 4.58 0.2153±0.0090 -0.0006±0.0012 3 K2III 1.56e4±6.53e2
HD163588 9241 160 0.069 7.19 3.5867±0.1173 0.2294±0.0129 3 K2III 7.51e1±2.46e0
HD163588 9241 160 0.069 7.19 3.5111±0.0986 0.2380±0.0108 3 K2III 7.68e1±2.16e0
HD163588 9241 160 0.069 7.19 3.9871±0.1176 0.2319±0.0129 3 K2III 6.76e1±1.99e0
HD197989 315R 160 0.164 44.25 5.6673±0.3975 1.0851±0.0415 3 K0III 1.13e2±7.93e0
HD209952 351X1 70 0.107 8.54 0.1067±0.0155 0.0001±0.0020 3 B7IV 1.03e4±1.49e3
HD209952 315R 70 0.107 8.55 0.0890±0.0088 0.0004±0.0012 10 B7IV 1.23e4±1.22e3

The data in the table have been used to examine how the calibration factor is affected by various parameters. The data have been plotted in Figure 1.


Figure 1: Calibration factors as a function of various parameters. On each panel, the 70µm data use the left-hand scale, while the 160µm data use the right-hand scale.

Linearity

The top-left panel of Figure 1 shows the calibration factor as a function of calibrator flux density. The data clearly show a trend with source brightness, with a 40% increase in calibration factor over a factor of 30 increase in flux density at 70µm and a steeper increase of 60% over a factor of 10 increase in flux density at 160µm. No correction for nonlinearity in the electronics has been made for these data. Due to the spectral leak, the 160µm points mimic the behavior of sources brighter by a factor of about 5. The leak behaves as expected with spectral type: the bright source far below the curve is the only hot star in the 160µm data, and thus has a larger leak (and correspondingly lower calibration factor).

Background

The top-right panel of Figure 1 shows the calibration factor as a function of background. There are no obvious trends in the data, although there is a lot of scatter. The apparent trend at 70µm may also be due to spectral type or small-number statistics, since the two lowest points on the plot correspond to the only hot star in the 70µm data (cf. lower-right panel of Figure 1).

Integration Time

The lower-left panel of Figure 1 shows the calibration factor as a function of integration time. This analysis requires more data, obviously.

Spectral Type

The lower-right panel of Figure 1 shows the calibration factor as a function of effective temperature, where I've simply converted the spectral type to a temperature using the tables in Lang's "Astrophysical Data." There are not enough data to determine if a trend is present at 70µm - as discussed above, the only points on this plot above 10,000K correspond to the same star. There is a weak trend at 160µm which has the expected behavior: hotter stars (which will have a bigger leak) imply smaller calibration factors. With the leak in this band, it may not be possible to disentangle systematic differences in flux prediction as a function of spectral type from changes in the amount of short-wavelength light that enter through the leak.


Conclusions

The data show some nonlinearity in the Ge:Ga detectors, which is to be expected since no linearity correction was performed on the data. The 160µm data show some effects due to spectral type, which follow the behavior expected of the spectral leak.


Output and Deliverable Products

None


Actions Following Analysis