// THIS SECTION IS IN PHP. // ENTER CAID AND TITLE W/IN QUOTES IN THE FOLLOWING 2 LINES ... $caid="905"; // Don't mess w/ $file. $file = "mips-".$caid.".cookbook.php"; // END PHP. ?>
Principal: dmkellyif (file_exists("cookbook_header.php")) { include ("cookbook_header.php");} ?>
Deputy: cengelbracht
Data Monkey(s): I am monkey enough for this one
Priority: Necessary
Downlink Priority: Normal
Analysis Time: 24h
Last Updated: if (file_exists($file)) {echo date("D M d Y, H:i:s", filemtime($file) ) ;} ?>
1) Turn on power to the combined electronics 2) Transition from OFF to MIPS_OBSERVE 3) Perform thermal anneals on all three arrays 4) Perform a Vrst Optimization on the 70um and 160um arrays 5) Point the telescope to the first desired target 6) Before beginning the next IOC task, wait as necessary until 10 minutes have elapsed since bias was restored to the Ge arrays and 30 minutes has elapsed since the CE power-on
Diagnostic data will be collected during the thermal anneals. For the 24um anneal, 160 samples will be collected on 1s intervals. The items are: 1. D24TmpA 2. D24TmpB 3. D160TmpA 4. D24AnnealCur 5. D70TmpA 6. D160JnctTmp 7. D70BaseTmp 8. D160BaseTmp 9. D160StimTmp 10. CSMMTmp For the 70um anneal, 60 samples will be collected on 1s intervals. The items are: 1. D70TmpA 2. D70TmpB 3. D70JnctTmp 4. D70AnHtrCur 5. D24TmpA 6. D160TmpA 7. D70BaseTmp 8. D160BaseTmp 9. D160JnctTmp 10. CSMMTmp For the 160um anneal, 80 samples will be collected on 1s intervals. The items are: 1. D160TmpA 2. D160TmpB 3. D160JnctTmp 4. D160AnHtrCur 5. D24TmpA 6. D70TmpA 7. D70BaseTmp 8. D160BaseTmp 9. D160StimTmp 10. CSMMTmp For the Vrst optimization, we will collect: mips_sur_C0F2N13
CE_OFF_BOOT CE_BOOT_OPR MIPS_OPR_MRDY MIPS_MRDY_MOBS ColDiag_160TMP_MIPS CEGEANNEAL_Heat_GE160_MIPS CEDumpDiag ColDiag_70TMP_MIPS CEGEANNEAL_Heat_GE70_MIPS CEDumpDiag ColDiag_24TMP_MIPS Si_Anneal_Heat_MIPSA_MIPS CEDumpDiag MIPS_MOBS_SCAN # Set the Ge array bias voltages to 0 mV sendcmd CELDHTGIF '3,0x80,"MIPS"' sendcmd CELDHTGIF '20,0x81,"MIPS"' # Initialize the array in preparation for taking data sendcmd CEGERSTCON '127,127,4,"MIPS"' sendcmd CESCANCON '"CHOP","REV",0,2048,2048,0,511,"MIPS"' # Turn on the Ge flood stims in manual mode sendcmd CEGESTIM '"MANUAL",8,"BON","BON","BOTHOFF",10,10,"MIPS"' # Send the 12 CELDHTGIF commands needed to set the 70um and 160um # voltages appropriately for the first exposure. # pause 5 sec # Collect 2 10s exposures in SUR mode sendcmd CEMIPSUR 'AORID_upper,AORID_lower,0,"NO_COADD",9,2,"MIPS"' # Repeat the CELDHTGIF and CEMIPSUR sequence for 12 more sets of Vrst values # Restore 70um bias to 40mV, 160um bias to 30mV sendcmd CELDHTGIF '3,0x91,"MIPS"' sendcmd CELDHTGIF '20,0x8E,"MIPS"' # Restore CEGESTIM to its nominal settings sendcmd CEGESTIM '"AUTO",63,"BOTHOFF","BOTHOFF","BOTHOFF",10,10,"MIPS"' # Restore nominal CEGERSTCON parameters sendcmd CEGERSTCON '10,127,4,"MIPS"' MIPS_BACKTO_MOBS # Wait 10m to allow the Ge detectors and CE to settle. wait 600
Array Data Desired:
CECOLDIAG data from the anneals All Array data for the Vrst optimization
Data Reformatting Option:
Special Instructions:
Step-by-step analysis: 1) Obtain the diagnostic data. This seemingly obvious step is called out because these data might not be delivered with the usual science data. They will not go through tranhead, nor through the SSC pipeline. 2) Generate plots of temperature versus time for each of the temperatures. The tools necessary for this step are listed in the cookbook for mips-015. 3) Determine the maximum temperature reached on each array during its anneal and enter these values into a database. Maintain plots of these items versus execution day and time so that long-term trending can be performed. 4) Check for changes in the long-term thermal behavior of the arrays during anneals. If present, assemble ancillary data (TBD) that affects the anneal temperatures and look for trends. This step will likely involve keeping the data from all IOC thermal anneals in a master spreadsheet, with coadding to produce master temperature plots and with overplotting to compare the most recent anneal with the master anneal temperature curves. 5) Reduce the Vrst optimization data using mips_sloper -l -a flight_ce# 7) Determine the optimum Vrst values using a yet-to-be-developed tool for this purpose. A preliminary (and perhaps sufficient) tool has been developed for this purpose by John Stansberry. 8) Enter the optimum Vrst values into a database along with relevant ancillary data and plot versus execution day and time. Look for trends and offsets and determine whether different Vrst values would be appropriate for the next campaign. 9) If new Vrst values are needed, take action to get these values entered into the CE MIPS/IRS patchblock for the next MIPS campaign.
Once the diagnostic data analysis tools are developed, there will be pointers here to those tools. A table will be added here showing maximum temperatures reached during thermal anneals in ground testing. The following is a summary of the Vrst data from ground testing. These Vrst values were determined by human analysis; the analysis should be repeated using an automated Vrst optimization tool. #70um and 160um optimum Vrst values, CE1 #(Viload=-1.1, CE2 or EMU' connected) # #Date V70_1 70_2 70_3 70_4 70_5 70_6 70_7 70_8 160_1 160_2 160_3 160_4 #Offset 0x900 0x8E0 0x900 0x8D0 0x900 0x900 0x910 0x8F0 0x970 0x910 0x920 0x920 00-060 5 6 1 5 8 -3 -5 5 -99 -99 -99 -99 00-060_2 9 13 11 13 13 5 1 9 -99 -99 -99 -99 00-067 13 13 9 21 13 5 5 13 -99 -99 -99 -99 00-067_2 13 11 7 17 13 7 3 11 -99 -99 -99 -99 00-068 9 9 9 21 17 1 1 13 -99 -99 -99 -99 00-069 13 11 5 17 17 3 -1 11 -99 -99 -99 -99 00-119 7 9 9 13 13 3 -5 13 13 23 15 8 00-123 9 9 8 11 13 5 -2 9 12 22 14 7 00-351 17 22 19 31 25 13 19 27 -99 15 -6 -14 00-353 17 24 20 31 25 15 20 23 -99 17 -1 -13 01-117 11 20 9 19 19 2 15 17 -8 9 -8 -15 01-118 9 18 9 19 25 9 15 21 -12 9 -8 -14 01-120 11 22 15 13 23 10 14 21 -5 12 -2 -15 01-121 12 23 14 20 23 11 15 17 -8 9 -8 -15 01-121_2 11 22 14 19 22 10 15 21 -12 9 -8 -14 01-131 14 24 16 26 22 11 17 20 -4 13 -2 -11 01-220 19 26 24 27 22 13 16 20 -3 12 -1 -13 01-226 18 24 20 28 19 12 14 20 -2 11 -1 -12 01-286 13 20 13 19 -99 -99 -99 -99 -3 11 -2 -12 01-302 17 24 21 25 14 4 5 11 -1 12 1 -9 FltDef 14 23 16 23 22 11 16 21 -7 12 -4 -13 #70um and 160um optimum Vrst values, CE2 #(Viload=-1.1, CE1 or EMU' connected) # #Date V70_1 70_2 70_3 70_4 70_5 70_6 70_7 70_8 160_1 160_2 160_3 160_4 #Offset 0x900 0x8E0 0x900 0x8D0 0x900 0x900 0x910 0x8F0 0x970 0x910 0x920 0x920 00-075 5 1 -9 5 9 1 -13 1 -99 -99 -99 -99 00-076 5 1 -7 5 9 1 -9 1 -99 -99 -99 -99 00-077 10 1 -6 9 12 3 -11 -1 -99 -99 -99 -99 00-124 5 6 4 10 9 -3 -5 5 0 -3 -5 1 00-126 -2 0 -3 7 -1 -12 -15 -4 2 -3 -4 3 00-356 11 9 10 25 26 14 7 18 -15 -8 -18 -14 01-116 12 10 1 17 26 14 7 16 -15 -8 -18 -11 01-116_2 5 9 -4 12 22 12 4 18 -17 -8 -18 -12 01-124 5 9 -6 14 17 5 3 8 -21 -12 -22 -13 01-129 11 11 -1 15 24 13 7 16 -13 -8 -17 -11 01-130 10 9 -2 12 23 11 4 12 -17 -10 -20 -12 01-222 11 13 6 20 21 12 5 11 -9 -3 -8 -12 01-230 13 12 0 23 20 11 1 9 -6 -3 -10 -12 01-265 4 5 -8 12 20 8 3 10 -22 -13 -22 -16 01-302 11 11 -2 16 14 4 -5 15 -9 -5 -12 -13 02-108 13 13 5 16 21 10 5 14 -14 -9 -16 -8 FltDef 10 10 0 17 23 11 5 13 -14 -8 -16 -12