MIPS Observations of Asteroids for 160um Flux Calibration

- About 125 individual asteroid observations beginning ~ 3MC
- Saturation limit mismatch between bands
 - Dimmer asteroids (about 60) observed at 24, 70, 160
 - 24um < 3Jy
 - 160 um < 0.5 Jy
 - Brighter at 70 and 160 only
- Use the dimmer asteroids to understand general SED properties
 - Fit 24 and 70um data
 - predict 160um to get cal factor at the dim end
 - Predict 'canonical' 70:160um color
- Use the brighter asteroids to extend to higher 160um fluxes
 - Use canonical 70:160um color to predict 160
- Statistical approach
 - Aren't too concerned about details of each object
 - Simply reject outliers and move on
- Boot-strapping the 160um cal from 24 and 70 not an independent calibration!

Status of reductions and modeling, insanity check

- Focus just on the objects with data at all 3 bands
 - Photometry at 160um complete
 - 24 and 70 done for ~45 observations (not done >19MC)
- Red_Phot package used for some, but not all data (?)
 - Need to reprocess everything, all 3 bands
- Spot-checked 160um red_phot photometry vs. me_phot
 - Used red_phot mosaics for both, same apertures, ap_corrs
 - 32", 64" 128"; 1.79
 - Reasonably good agreement
 - Pointing an issue for red_phot results
 - Need to re-do photometry for everything

Typical 160um images

J Stansberry, MIPS Cal Wkshp. 2005 September 19

Pointing Issues

- Red_Phot does photometry at REF_POS for 160um
 - Non-circular aperture

J Stansberry, MIPS Cal Wkshp. 2005 September 19

Pointing Issues

J Stansberry, MIPS Cal Wkshp. 2005 September 19

SEDs: SSC Predictions & UofA Fits

- SSC: Bidushi
 - Standard Thermal Model (STM)
 - Equiv. to non-rotating sphere
 - Use IRAS albedo + size
 - Get helio- and Spitzer- distances from JPL Horizons service
 - \rightarrow SED prediction
 - Used for observation planning
- UofA: Myra
 - STM
 - Includes viewing geometry
 - Get helio- and Spitzer- distances, H_V, phase angle from JPL Horizons service
 - Run a grid of models, minimize residuals from 24 and 70um photometry
 - Used for:
 - Predicting 160um flux
 - Looking at variations in predicted 70:160um color

• Many more data points possible – these are where I checked the 160um phot.

J Stansberry, MIPS Cal Wkshp. 2005 September 19

J Stansberry, MIPS Cal Wkshp. 2005 September 19

Conclusions

- The observations and approach seem to be adequate
 - No indication so far that the 160um cal factor needs to be revised
 - Change in 24 and 70 cal factors may impact this conclusion
- The data analysis and modeling need to be done more systematically
 - IRAS-based predictions are inadequate for cal purposes
 - Inhomogeneous reduction and mosaicking
 - Human-tended photometry or centroiding needed
- There is interesting science here
 - The albedos and diameters we find disagree w/ those from IRAS
 - We can also derive beaming param from our data