

MIPS 70 μm Array Anomaly ISA Z81711

Erick Young, George Rieke, Jerry Heim, John Stansberry, Doug Kelly, and Tom Glenn

- Problem discovered during MIPS aliveness testing in Campaign A1
 - Telescope temperature ~ 130 K was high enough to saturate all MIPS detectors
 - Aliveness test consisted of small changes in detector bias signals to drive detectors from rail to rail
 - Outputs of readout (4,4) (CTA convention) are stuck at negative rail.
 - Instrument telemetry shows no significant changes since ground test, indicating the array itself is healthy

Pixel Map of 70 µm Array

previous anomaly

new anomaly

 (4,4) Pixel behavior unchanged throughout entire scattered background campaign

MIPS 70 µm Array Architecture

CRC-696 Schematic

Differential Amplifiers

Cable Redundancy

- 70 μ m array is divided into two identical 16x32 halves with non-redundant ribbon cables
- Cables to CE-1 and CE-2 warm electronics boxes are redundant after J-boxes.

Possible Causes

- Broken output line between readout and input of Combined Electronics
 - Each of the 32 outputs has a 5 μ A constant current source
 - A broken output line will drive output to negative rail
 - We have previously encountered a broken line on the Side A CTA cryogenic cabling – that cable was replaced
- Failed wire bond at readout
- Failed readout chip
- Failed component in analog signal chain of CE prior to analog multiplexer
- Failure of specific input of analog multiplexer in CE

Ruled Out as Causes

- Clock and Bias Drivers CE
 - Failure would affect half the array
- Clock and Bias Lines in Cables
 - Failure would affect half the array
- Clock and Bias Lines at Module Level
 - Failure would affect four readouts
- Output short to chassis
 - Would not drive output to negative rail
 - Observed fault would require a short to positive supply
- Open sense line for readout (4,4)
 - CE includes resistor to parallel sense line to guard against this possibility

Recommended Test

- We propose an engineering test that repeats the MIPS Campaign B with CE-2
 - If the fault is in the signal chain between the J-Box and the CE, the problem would be fixed
 - Any problem within the CE would also be fixed
 - Include variation of V_{offset} to diagnose open output line vs voltage shift
 - Initiated testing of IER
 - Anomaly team has focused on safety to the instrument
 - Most likely open circuit root cause poses no risk
 - MIPS was operated throughout Campaign A1 with no apparent effect to the other 31 readouts
 - Bias lines are current limited
 - Digital lines are current limited
 - No plausible additional risk to instrument has been identified
- Anomaly team has agreed that CE-1 remains the baseline electronics box

Backup Slides

CE 70 μ m Input Stage

Typical Digital Driver

Typical Bias Driver

